Plasmonic Hot Electron Induced Photocurrent Response at MoS2-Metal Junctions.
نویسندگان
چکیده
We investigate the wavelength- and polarization-dependence of photocurrent signals generated at few-layer MoS2-metal junctions through spatially resolved photocurrent measurements. When incident photon energy is above the direct bandgap of few-layer MoS2, the maximum photocurrent response occurs for the light polarization direction parallel to the metal electrode edge, which can be attributed to photovoltaic effects. In contrast, if incident photon energy is below the direct bandgap of MoS2, the photocurrent response is maximized when the incident light is polarized in the direction perpendicular to the electrode edge, indicating different photocurrent generation mechanisms. Further studies show that this polarized photocurrent response can be interpreted in terms of the polarized absorption of light by the plasmonic metal electrode, its conversion into hot electron-hole pairs, and subsequent injection into MoS2. These fundamental studies shed light on the knowledge of photocurrent generation mechanisms in metal-semiconductor junctions, opening the door for engineering future two-dimensional materials based optoelectronics through surface plasmon resonances.
منابع مشابه
Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna
Monolayer molybdenum disulfide (MoS2) has recently attracted intense interests due to its remarkable optical properties of valley-selected optical response, strong nonlinear wave mixing and photocurrent/photovoltaic generation and many corresponding potential applications. However, the nature of atomic-thin thickness of monolayer MoS2 leads to inefficient light-matter interactions and thereby h...
متن کاملStudy of Photo-Conductivity in MoS2 Thin Films Grown in Low-Temperature Aqueous Solution Bath
An experimental study over the optical response of thin MoS2 films grownby chemical bath deposition (CBD) method is presented. As two important factors, theeffect of bath temperature and growth time are considered on the photocurrentgeneration in the grown samples. The results show that increasing the growth time leadsto better optical response and higher difference betw...
متن کاملPhotothermoelectric and photovoltaic effects both present in MoS2
As a finite-energy-bandgap alternative to graphene, semiconducting molybdenum disulfide (MoS2) has recently attracted extensive interest for energy and sensor applications. In particular for broad-spectral photodetectors, multilayer MoS2 is more appealing than its monolayer counterpart. However, little is understood regarding the physics underlying the photoresponse of multilayer MoS2. Here, we...
متن کاملAnisotropic photocurrent response at black phosphorus-MoS2 p-n heterojunctions.
We investigate the photocurrent generation mechanisms at a vertical p-n heterojunction between black phosphorus (BP) and molybdenum disulfide (MoS2) flakes through polarization-, wavelength-, and gate-dependent scanning photocurrent measurements. When incident photon energy is above the direct band gap of MoS2, the photocurrent response demonstrates a competitive effect between MoS2 and BP in t...
متن کاملIndirect Band Gap Emission by Hot Electron Injection in Metal/MoS₂ and Metal/WSe₂ Heterojunctions.
Transition metal dichalcogenides (TMDCs), such as MoS2 and WSe2, are free of dangling bonds and therefore make more "ideal" Schottky junctions than bulk semiconductors, which produce Fermi energy pinning and recombination centers at the interface with bulk metals, inhibiting charge transfer. Here, we observe a more than 10× enhancement in the indirect band gap photoluminescence of transition me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 9 5 شماره
صفحات -
تاریخ انتشار 2015